login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281621
The smallest of four consecutive odd numbers with binary representations which, read in decimal, are prime.
1
173599, 418727, 1120979, 1283423, 1660677, 2755429, 3884515, 4704667, 5050711, 5058587, 5197757, 6613127, 6983139, 7423731, 10052677, 10311443, 11315237, 11769187, 15186613, 16145627, 18620507, 19579079, 19624723, 20823831, 20929957, 21387095, 21606883, 23517507
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..676
EXAMPLE
a(1) = 173599 is the smallest in set of 4 consecutive odd numbers {173599, 173601, 173603, 173605} whose binary representations respectively are {101010011000011111, 101010011000100001, 101010011000100011, 101010011000100101} which are all prime when read in decimal.
MATHEMATICA
Select[Range[-1, 30000001, 2], PrimeQ[FromDigits[IntegerDigits[(#), 2]]] && PrimeQ[FromDigits[IntegerDigits[(# + 2), 2]]] && PrimeQ[FromDigits[IntegerDigits[(# + 4), 2]]] && PrimeQ[FromDigits[IntegerDigits[(# + 6), 2]]] &]
Select[Partition[Range[1, 23518000, 2], 4, 1], AllTrue[ FromDigits[ #]&/@ IntegerDigits[#, 2], PrimeQ]&][[All, 1]] (* Harvey P. Dale, Aug 30 2021 *)
PROG
(PARI) has(n)=isprime(fromdigits(binary(n), 10))
is(n)=has(n) && has(n+2) && has(n+4) && has(n+6) \\ Charles R Greathouse IV, Jan 29 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Jan 25 2017
STATUS
approved