login
A281485
Triangular array T(n,k) = k Sum_{j=0..k-1} (-1)^j binomial(k-1,j) (n-1-j)^(n-1), 1<=k<=n, read by rows.
0
1, 1, 2, 4, 6, 6, 27, 38, 36, 24, 256, 350, 330, 240, 120, 3125, 4202, 3960, 3000, 1800, 720, 46656, 62062, 58506, 45360, 29400, 15120, 5040, 823543, 1087214, 1025388, 806904, 546000, 312480, 141120, 40320, 16777216, 22024830, 20781690, 16524144, 11493720, 6985440, 3598560, 1451520, 362880
OFFSET
1,3
COMMENTS
A parking function of size n is a sequence (a_1,...,a_n) of positive integers such that, if b_1 <= b_2 <= ... <= b_n is the increasing rearrangement of the sequence (a_1,..,a_n), then b_i <= i.
Given a:[n]->[n], the center of a is the largest subset Z(a) = { z_1, ..., z_k } of [n] such that z_1 < z_2 < ... < z_k and a_(z_j) <= j, for every j in [k]. The length of the center of a is |Z(a)|.
Then T(n,k)= number of parking functions of size n with center of length k.
LINKS
Rui Duarte and António Guedes de Oliveira, The number of parking functions with center of a given length, arXiv:1611.03707 (2016).
FORMULA
T(n,k) = k*Sum_{j=0..k-1} (-1)^j*binomial(k-1,j)*(n-1-j)^(n-1).
T(n,k) = k!*Sum_{j_1+j_2+...+j_k=n-k} (n-1)^(j_1)*(n-2)^(j_2)*...*(n-k)^(j_k).
EXAMPLE
First seven rows:
1
1 2
4 6 6
27 38 36 24
256 350 330 240 120
3125 4202 3960 3000 1800 720
46656 62062 58506 45360 29400 15120 5040
MATHEMATICA
Table[Which[n == k == 1, 1, k == 1, (n - 1)^(n - 1), k == n, n!, True, k Sum[(-1)^j*Binomial[k - 1, j] (n - 1 - j)^(n - 1), {j, 0, k - 1}]], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 23 2017 *)
CROSSREFS
T(n,k) = k * A174551(n-1,k-1).
T(n,1) = (n-1)^(n-1) = A000312(n-1).
T(n,n-1) = n!(n-1)/2 = A001286(n), n>=2.
T(n,n) = n! = A000142(n).
Sum_{i=1,...,n} T(n,i) = (n+1)^(n-1) = A000272(n+1).
Sequence in context: A286894 A346911 A225187 * A142473 A132426 A072646
KEYWORD
nonn,tabl
AUTHOR
Rui Duarte, Jan 22 2017
STATUS
approved