login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281445 Nonnegative k for which (2*k^2 + 1)/11 is an integer. 1
4, 7, 15, 18, 26, 29, 37, 40, 48, 51, 59, 62, 70, 73, 81, 84, 92, 95, 103, 106, 114, 117, 125, 128, 136, 139, 147, 150, 158, 161, 169, 172, 180, 183, 191, 194, 202, 205, 213, 216, 224, 227, 235, 238, 246, 249, 257, 260, 268, 271, 279, 282, 290, 293, 301, 304, 312, 315 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For prime d < 11, (2*k^2 + 1)/d can provide integers when d = 3 (A186424).

Corresponding values of (2*k^2 + 1)/11 are listed in A179088.

All k == 4 or 7 (mod 11). - Robert Israel, Apr 25 2017

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

O.g.f.: x*(4 + 3*x + 4*x^2)/((1 + x)*(1 - x)^2).

E.g.f.: 4 - 5*exp(-x)/4 - 11*(1 - 2*x)*exp(x)/4.

a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).

a(n) = (22*n - 5*(-1)^n - 11)/4. Therefore: a(2*h) = 11*h - 4, a(2*h+1) = 11*h + 4.

If h>0,

h*a(n) + (6*h - 5*(-1)^h - 11)/4 = a(h*n) for odd n; otherwise:

h*a(n) + 4*(h - 1) = a(h*n). Some special cases:

h=2: 2*a(n) - 1 = a(2*n) for odd n, 2*a(n) +  4 = a(2*n) for even n;

h=3: 3*a(n) + 3 = a(3*n) for odd n, 3*a(n) +  8 = a(3*n) for even n;

h=4: 4*a(n) + 2 = a(4*n) for odd n, 4*a(n) + 12 = a(4*n) for even n;

h=5: 5*a(n) + 6 = a(5*n) for odd n, 5*a(n) + 16 = a(5*n) for even n, and so on.

MAPLE

seq(seq(11*i+j, j=[4, 7]), i=0..50); # Robert Israel, Apr 25 2017

MATHEMATICA

Select[Range[400], IntegerQ[(2*#^2 + 1)/11] &]

PROG

(Sage) [k for k in range(400) if ((2*k^2+1)/11).is_integer()]

(MAGMA) &cat [[11*n+4, 11*n+7]: n in [0..30]];

CROSSREFS

Cf. A179088.

Cf. A001651: nonnegative k for which (2*k^2 + 1)/3 is an integer.

Sequence in context: A310923 A310924 A310925 * A310926 A310927 A049832

Adjacent sequences:  A281442 A281443 A281444 * A281446 A281447 A281448

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Apr 13 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 16:02 EST 2021. Contains 340352 sequences. (Running on oeis4.)