login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281445 Nonnegative k for which (2*k^2 + 1)/11 is an integer. 1
4, 7, 15, 18, 26, 29, 37, 40, 48, 51, 59, 62, 70, 73, 81, 84, 92, 95, 103, 106, 114, 117, 125, 128, 136, 139, 147, 150, 158, 161, 169, 172, 180, 183, 191, 194, 202, 205, 213, 216, 224, 227, 235, 238, 246, 249, 257, 260, 268, 271, 279, 282, 290, 293, 301, 304, 312, 315 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For prime d < 11, (2*k^2 + 1)/d can provide integers when d = 3 (A186424).

Corresponding values of (2*k^2 + 1)/11 are listed in A179088.

All k == 4 or 7 (mod 11). - Robert Israel, Apr 25 2017

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

O.g.f.: x*(4 + 3*x + 4*x^2)/((1 + x)*(1 - x)^2).

E.g.f.: 4 - 5*exp(-x)/4 - 11*(1 - 2*x)*exp(x)/4.

a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).

a(n) = (22*n - 5*(-1)^n - 11)/4. Therefore: a(2*h) = 11*h - 4, a(2*h+1) = 11*h + 4.

If h>0,

h*a(n) + (6*h - 5*(-1)^h - 11)/4 = a(h*n) for odd n; otherwise:

h*a(n) + 4*(h - 1) = a(h*n). Some special cases:

h=2: 2*a(n) - 1 = a(2*n) for odd n, 2*a(n) + 4 = a(2*n) for even n;

h=3: 3*a(n) + 3 = a(3*n) for odd n, 3*a(n) + 8 = a(3*n) for even n;

h=4: 4*a(n) + 2 = a(4*n) for odd n, 4*a(n) + 12 = a(4*n) for even n;

h=5: 5*a(n) + 6 = a(5*n) for odd n, 5*a(n) + 16 = a(5*n) for even n, and so on.

MAPLE

seq(seq(11*i+j, j=[4, 7]), i=0..50); # Robert Israel, Apr 25 2017

MATHEMATICA

Select[Range[400], IntegerQ[(2*#^2 + 1)/11] &]

PROG

(Sage) [k for k in range(400) if ((2*k^2+1)/11).is_integer()]

(Magma) &cat [[11*n+4, 11*n+7]: n in [0..30]];

CROSSREFS

Cf. A179088.

Cf. A001651: nonnegative k for which (2*k^2 + 1)/3 is an integer.

Sequence in context: A310923 A310924 A310925 * A310926 A310927 A049832

Adjacent sequences: A281442 A281443 A281444 * A281446 A281447 A281448

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Apr 13 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)