login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179088 Positive integers of the form (2*m^2+1)/11. 7
3, 9, 41, 59, 123, 153, 249, 291, 419, 473, 633, 699, 891, 969, 1193, 1283, 1539, 1641, 1929, 2043, 2363, 2489, 2841, 2979, 3363, 3513, 3929, 4091, 4539, 4713, 5193, 5379, 5891, 6089, 6633, 6843, 7419, 7641, 8249, 8483, 9123, 9369, 10041, 10299, 11003, 11273 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Here m = (11*(2*n - 1) - 5*(-1)^n)/4 for n>0.

All terms of A113338 are in the sequence.

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

a(n) = (22*n*(n - 1) - 5*(2*n - 1)*(-1)^n + 7)/4.

G.f.: x*(3 + 6*x + 26*x^2 + 6*x^3 + 3*x^4)/((1 + x)^2*(1 - x)^3).

a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).

a(2*n)+a(2*n+1)= 11*A000290(2*n)+6; a(2*n-1)+a(2*n) = 11*A000290(2*n-1)+1.

MAPLE

t1:=[]; for n from 0 to 1000 do i:=2*n^2+1; if i mod 11 = 0 then t1:=[op(t1), i/11]; fi; od: # N. J. A. Sloane, Jul 05 2010

MATHEMATICA

Select[Table[(2m^2 + 1)/11, {m, 0, 300}], IntegerQ] (* Harvey P. Dale, Dec 17 2010 *)

PROG

(Magma) [i/11: m in [1..250] | i mod 11 eq 0 where i is 2*m^2+1]; // Bruno Berselli, Jun 26 2011

(PARI) for(m=1, 250, i=2*m^2+1; if(Mod(i, 11)==0, print1(i/11", "))); \\ Bruno Berselli, Jun 26 2011

CROSSREFS

Cf. A113338, A179337-A179370.

Sequence in context: A233533 A190341 A222669 * A027893 A018417 A228478

Adjacent sequences: A179085 A179086 A179087 * A179089 A179090 A179091

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jun 29 2010 - Jul 09 2010

EXTENSIONS

Edited by N. J. A. Sloane, Jul 05 2010: offset changed to 1 (since this is a list), and terms verified.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 02:54 EDT 2023. Contains 361603 sequences. (Running on oeis4.)