login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280541
G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(i*j).
11
1, 1, 4, 10, 24, 52, 125, 253, 549, 1126, 2290, 4525, 8987, 17259, 33174, 62669, 117425, 217295, 399904, 726984, 1314257, 2354807, 4191671, 7405590, 13009916, 22696115, 39384232, 67937488, 116584833, 199001304, 338076500, 571507377, 961855945, 1611567819
OFFSET
0,3
LINKS
Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
Conjecture: log(a(n)) ~ 3 * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Aug 29 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 27 2018 *)
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 05 2017
STATUS
approved