login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280500
Square array for division in ring GF(2)[X]: A(r,c) = r/c, or 0 if c is not a divisor of r, where the binary expansion of each number defines the corresponding (0,1)-polynomial.
10
1, 0, 2, 0, 1, 3, 0, 0, 0, 4, 0, 0, 1, 2, 5, 0, 0, 0, 0, 0, 6, 0, 0, 0, 1, 3, 3, 7, 0, 0, 0, 0, 0, 2, 0, 8, 0, 0, 0, 0, 1, 0, 0, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 2, 7, 5, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 12, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 14, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 0, 3, 0, 7, 15
OFFSET
1,3
COMMENTS
The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
FORMULA
A(row,col) = the unique d such that A048720(d,col) = row, provided that such d exists, otherwise zero.
Other identities. For all n >= 1:
A(n, A001317(A268389(n))) = A268669(n).
EXAMPLE
The top left 17 X 17 corner of the array:
col: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
--------------------------------------------------
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
4, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
5, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
6, 3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
8, 4, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
9, 0, 7, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
10, 5, 6, 0, 2, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
14, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
15, 0, 5, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
16, 8, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0
17, 0, 15, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1
---------------------------------------------------
7 ("111" in binary) encodes polynomial X^2 + X + 1, which is irreducible over GF(2) (7 is in A014580), thus it is divisible only by itself and 1, and for any other values of c than 1 and 7, A(7,c) = 0.
9 ("1001" in binary) encodes polynomial X^3 + 1, which is factored over GF(2) as (X+1)(X^2 + X + 1), and thus A(9,3) = 7 and A(9,7) = 3 because the polynomial X + 1 is encoded by 3 ("11" in binary).
PROG
(PARI)
up_to = 10440;
A280500sq(a, b) = { my(Pa=Pol(binary(a))*Mod(1, 2), Pb=Pol(binary(b))*Mod(1, 2)); if(0!=lift(Pa % Pb), 0, fromdigits(Vec(lift(Pa/Pb)), 2)); };
A280500list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A280500sq(col, (a-(col-1))))); (v); };
v280500 = A280500list(up_to);
A280500(n) = v280500[n]; \\ Antti Karttunen, Jan 05 2025
(Scheme)
(define (A280500 n) (A280500bi (A002260 n) (A004736 n)))
;; A very naive implementation:
(define (A280500bi row col) (let loop ((d row)) (cond ((zero? d) d) ((= (A048720bi d col) row) d) (else (loop (- d 1)))))) ;; A048720bi implements the carryless binary multiplication A048720.
CROSSREFS
Cf. A280499 for the lower triangular region (A280494 for its transpose).
Sequence in context: A333687 A210572 A085855 * A309576 A128132 A127701
KEYWORD
nonn,tabl,changed
AUTHOR
Antti Karttunen, Jan 09 2017
STATUS
approved