login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279932
Expansion of Product_{k>0} 1/(1 + x^k)^(k*5).
4
1, -5, 5, 0, 30, -51, 5, -130, 220, -125, 649, -605, 870, -2695, 1565, -4852, 7915, -6360, 20625, -17880, 33551, -61015, 50865, -138510, 135485, -224725, 389025, -359610, 849525, -838970, 1417404, -2195205, 2275690, -4756040, 4657940, -8315123, 11174840, -13352315
OFFSET
0,2
COMMENTS
In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
LINKS
FORMULA
a(n) ~ (-1)^n * exp(-5/12 + 3 * 2^(-5/3) * (5*Zeta(3))^(1/3) * n^(2/3)) * A^5 * (5*Zeta(3))^(1/36) / (2^(5/9) * sqrt(3*Pi) * n^(19/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
G.f.: exp(5*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Mar 27 2018
CROSSREFS
Column k=5 of A279928.
Product_{k>0} 1/(1 + x^k)^(k*m): A027906 (m=-4), A255528 (m=1), A278710 (m=2), A279031 (m=3), A279411 (m=4), this sequence (m=5).
Sequence in context: A121212 A182787 A133337 * A022697 A286838 A347684
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 12 2017
STATUS
approved