OFFSET
0,2
COMMENTS
In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
FORMULA
a(n) ~ (-1)^n * exp(-5/12 + 3 * 2^(-5/3) * (5*Zeta(3))^(1/3) * n^(2/3)) * A^5 * (5*Zeta(3))^(1/36) / (2^(5/9) * sqrt(3*Pi) * n^(19/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017
G.f.: exp(5*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Mar 27 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 12 2017
STATUS
approved