login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>0} 1/(1 + x^k)^(k*5).
4

%I #19 Mar 28 2018 03:58:43

%S 1,-5,5,0,30,-51,5,-130,220,-125,649,-605,870,-2695,1565,-4852,7915,

%T -6360,20625,-17880,33551,-61015,50865,-138510,135485,-224725,389025,

%U -359610,849525,-838970,1417404,-2195205,2275690,-4756040,4657940,-8315123,11174840,-13352315

%N Expansion of Product_{k>0} 1/(1 + x^k)^(k*5).

%C In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Apr 13 2017

%H Seiichi Manyama, <a href="/A279932/b279932.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) ~ (-1)^n * exp(-5/12 + 3 * 2^(-5/3) * (5*Zeta(3))^(1/3) * n^(2/3)) * A^5 * (5*Zeta(3))^(1/36) / (2^(5/9) * sqrt(3*Pi) * n^(19/36)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Apr 13 2017

%F G.f.: exp(5*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - _Ilya Gutkovskiy_, Mar 27 2018

%Y Column k=5 of A279928.

%Y Product_{k>0} 1/(1 + x^k)^(k*m): A027906 (m=-4), A255528 (m=1), A278710 (m=2), A279031 (m=3), A279411 (m=4), this sequence (m=5).

%K sign

%O 0,2

%A _Seiichi Manyama_, Apr 12 2017