|
|
A279798
|
|
Largest prime factor of 78557*2^n + 1.
|
|
0
|
|
|
67, 104743, 8609, 281, 521, 1163, 1436471, 12391, 136343, 1483, 23663, 727, 10453, 2029, 135481883, 7429021, 2059324621, 6864415403, 3716857, 9629, 451358821, 51782483, 62504399, 439322585771, 63337, 128110399, 42209, 59569669, 111486983, 10936129, 31585821557
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) <= A258073(n) / A258091(n).
|
|
LINKS
|
Table of n, a(n) for n=1..31.
Wikipedia, Sierpinski Number
|
|
FORMULA
|
a(n) = A006530(A258073(n)).
|
|
EXAMPLE
|
78557 * 2^1 + 1 = 157115 = 5 * 7 * 67^2. So a(1) = 67.
78557 * 2^2 + 1 = 314229 = 3 * 104743. So a(2) = 104743.
|
|
MATHEMATICA
|
Table[FactorInteger[2^n * 78557 + 1][[-1, 1]], {n, 30}] (* Alonso del Arte, Jan 01 2017 *)
|
|
PROG
|
(PARI) a(n) = my(k=78557*2^n+1); factor(k)[omega(k), 1] \\ Felix Fröhlich, Jan 01 2017
|
|
CROSSREFS
|
Cf. A002587, A258073, A258091.
Sequence in context: A144940 A211962 A263463 * A191941 A087536 A281888
Adjacent sequences: A279795 A279796 A279797 * A279799 A279800 A279801
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Dec 19 2016
|
|
STATUS
|
approved
|
|
|
|