login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279522
Number of ways to write n as w^2 + x^2 + y^2 + z^2 with w + 2*x + 3*y + 5*z a square, where w,x,y,z are nonnegative integers.
1
1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 2, 2, 2, 1, 3, 5, 2, 2, 5, 4, 1, 1, 2, 4, 1, 0, 7, 3, 1, 1, 1, 4, 6, 4, 5, 4, 4, 3, 3, 5, 2, 3, 5, 4, 2, 1, 4, 8, 5, 1, 5, 12, 1, 1, 2, 6, 3, 4, 3, 3, 9, 1, 6, 4, 2, 3, 8, 8, 2, 3, 7, 7, 7, 3, 8, 14, 3, 2
OFFSET
0,6
COMMENTS
Conjecture: (i) a(n) = 0 if and only if n = 16^k*28 for some k = 0,1,2,....
(ii) For any positive integers a,b,c,d, there are infinitely many positive integers which cannot be written as w^2 + x^2 + y^2 + z^2 with a*w + b*x + c*y + d*z a square, where w,x,y,z are nonnegative integers.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016.
EXAMPLE
a(27) = 1 since 27 = 1^2 + 5^2 + 0^2 + 1^2 with 1 + 2*5 + 3*0 + 5*1 = 4^2.
a(31) = 1 since 31 = 1^2 + 2^2 + 5^2 + 1^2 with 1 + 2*2 + 3*5 + 5*1 = 5^2.
a(33) = 1 since 33 = 0^2 + 4^2 + 4^2 + 1^2 with 0 + 2*4 + 3*4 + 5*1 = 5^2.
a(52) = 1 since 52 = 4^2 + 6^2 + 0^2 + 0^2 with 4 + 2*6 + 3*0 + 5*0 = 4^2.
a(55) = 1 since 55 = 1^2 + 5^2 + 5^2 + 2^2 with 1 + 2*5 + 3*5 + 5*2 = 6^2.
a(56) = 1 since 56 = 0^2 + 4^2 + 6^2 + 2^2 with 0 + 2*4 + 3*6 + 5*2 = 6^2.
a(88) = 1 since 88 = 4^2 + 8^2 + 2^2 + 2^2 with 4 + 2*8 + 3*2 + 5*2 = 6^2.
a(137) = 1 since 137 = 10^2 + 6^2 + 1^2 + 0^2 with 10 + 2*6 + 3*1 + 5*0 = 5^2.
a(164) = 1 since 164 = 12^2 + 2^2 + 0^2 + 4^2 with 12 + 2*2 + 3*0 + 5*4 = 6^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[Sqrt[n-x^2-y^2-z^2]+2x+3y+5z], r=r+1], {x, 0, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 14 2016
STATUS
approved