login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to write n as w^2 + x^2 + y^2 + z^2 with w + 2*x + 3*y + 5*z a square, where w,x,y,z are nonnegative integers.
1

%I #7 Dec 14 2016 09:24:48

%S 1,1,1,1,1,2,2,1,1,2,3,1,1,2,2,2,1,3,5,2,2,5,4,1,1,2,4,1,0,7,3,1,1,1,

%T 4,6,4,5,4,4,3,3,5,2,3,5,4,2,1,4,8,5,1,5,12,1,1,2,6,3,4,3,3,9,1,6,4,2,

%U 3,8,8,2,3,7,7,7,3,8,14,3,2

%N Number of ways to write n as w^2 + x^2 + y^2 + z^2 with w + 2*x + 3*y + 5*z a square, where w,x,y,z are nonnegative integers.

%C Conjecture: (i) a(n) = 0 if and only if n = 16^k*28 for some k = 0,1,2,....

%C (ii) For any positive integers a,b,c,d, there are infinitely many positive integers which cannot be written as w^2 + x^2 + y^2 + z^2 with a*w + b*x + c*y + d*z a square, where w,x,y,z are nonnegative integers.

%H Zhi-Wei Sun, <a href="/A279522/b279522.txt">Table of n, a(n) for n = 0..5000</a>

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.NT], 2016.

%e a(27) = 1 since 27 = 1^2 + 5^2 + 0^2 + 1^2 with 1 + 2*5 + 3*0 + 5*1 = 4^2.

%e a(31) = 1 since 31 = 1^2 + 2^2 + 5^2 + 1^2 with 1 + 2*2 + 3*5 + 5*1 = 5^2.

%e a(33) = 1 since 33 = 0^2 + 4^2 + 4^2 + 1^2 with 0 + 2*4 + 3*4 + 5*1 = 5^2.

%e a(52) = 1 since 52 = 4^2 + 6^2 + 0^2 + 0^2 with 4 + 2*6 + 3*0 + 5*0 = 4^2.

%e a(55) = 1 since 55 = 1^2 + 5^2 + 5^2 + 2^2 with 1 + 2*5 + 3*5 + 5*2 = 6^2.

%e a(56) = 1 since 56 = 0^2 + 4^2 + 6^2 + 2^2 with 0 + 2*4 + 3*6 + 5*2 = 6^2.

%e a(88) = 1 since 88 = 4^2 + 8^2 + 2^2 + 2^2 with 4 + 2*8 + 3*2 + 5*2 = 6^2.

%e a(137) = 1 since 137 = 10^2 + 6^2 + 1^2 + 0^2 with 10 + 2*6 + 3*1 + 5*0 = 5^2.

%e a(164) = 1 since 164 = 12^2 + 2^2 + 0^2 + 4^2 with 12 + 2*2 + 3*0 + 5*4 = 6^2.

%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];

%t Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[Sqrt[n-x^2-y^2-z^2]+2x+3y+5z],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,0,80}]

%Y Cf. A000118, A000290, A270969, A271518, A273404.

%K nonn

%O 0,6

%A _Zhi-Wei Sun_, Dec 14 2016