login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279410
Numbers whose squares have identical middle digits in base 10
1
35, 38, 46, 65, 76, 83, 85, 318, 335, 348, 359, 380, 383, 393, 400, 415, 419, 432, 436, 441, 457, 469, 500, 511, 526, 527, 585, 586, 599, 600, 611, 620, 636, 648, 654, 665, 688, 692, 696, 700, 711, 718, 728, 752, 755, 771, 781, 786, 793, 800, 809, 811, 826, 828, 832, 834, 836, 838, 857, 866, 880, 900, 908, 911, 922, 928, 944, 951, 958, 995
OFFSET
1,1
COMMENTS
The sequence of squares starts: 1225, 1444, 2116, 4225, 5776, 6889, 7225, 101124, 112225, 121104, 128881, 144400, ...
By definition the sequence only contains numbers whose square has an even number of digits in base 10.
The sequence of middle digits starts: 2, 4, 1, 2, 7, 8, 2, 1, 2, 1, 8, 4, 6, 4, 0, ...
EXAMPLE
46 is in this sequence because its square, 2116, has its two middle digits equal to 1.
MAPLE
a:= proc(n) option remember; local k, kk, t;
for k from 1+`if`(n=1, 0, a(n-1)) do kk:=k^2;
t:= length(kk);
if t::even and irem(parse(substring(""||kk,
t/2..t/2+1)), 11)=0 then return k fi
od
end:
seq(a(n), n=1..80); # Alois P. Heinz, Dec 22 2016
MATHEMATICA
TakeEvenCenter[k_List] :=
If[EvenQ[Length[k]], k[[{Length[k]/2, Length[k]/2 + 1}]], {}]; Module[{rz},
Select[Range[
1000], (rz = TakeEvenCenter[IntegerDigits[#^2, 10]];
Length[rz] == 2 && Equal @@ rz) &]]
CROSSREFS
Sequence in context: A064610 A030589 A114965 * A061755 A094523 A249429
KEYWORD
nonn,base
AUTHOR
Olivier Gérard, Dec 12 2016
STATUS
approved