login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose squares have identical middle digits in base 10
1

%I #13 Dec 23 2024 14:53:45

%S 35,38,46,65,76,83,85,318,335,348,359,380,383,393,400,415,419,432,436,

%T 441,457,469,500,511,526,527,585,586,599,600,611,620,636,648,654,665,

%U 688,692,696,700,711,718,728,752,755,771,781,786,793,800,809,811,826,828,832,834,836,838,857,866,880,900,908,911,922,928,944,951,958,995

%N Numbers whose squares have identical middle digits in base 10

%C The sequence of squares starts: 1225, 1444, 2116, 4225, 5776, 6889, 7225, 101124, 112225, 121104, 128881, 144400, ...

%C By definition the sequence only contains numbers whose square has an even number of digits in base 10.

%C The sequence of middle digits starts: 2, 4, 1, 2, 7, 8, 2, 1, 2, 1, 8, 4, 6, 4, 0, ...

%H Robert Israel, <a href="/A279410/b279410.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2016-December/017132.html">Mail by Lars Blomberg to the Seqfan Mailing list Dec 12 2016</a>

%e 46 is in this sequence because its square, 2116, has its two middle digits equal to 1.

%p a:= proc(n) option remember; local k, kk, t;

%p for k from 1+`if`(n=1, 0, a(n-1)) do kk:=k^2;

%p t:= length(kk);

%p if t::even and irem(parse(substring(""||kk,

%p t/2..t/2+1)), 11)=0 then return k fi

%p od

%p end:

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Dec 22 2016

%t TakeEvenCenter[k_List] :=

%t If[EvenQ[Length[k]], k[[{Length[k]/2, Length[k]/2 + 1}]], {}]; Module[{rz},

%t Select[Range[

%t 1000], (rz = TakeEvenCenter[IntegerDigits[#^2, 10]];

%t Length[rz] == 2 && Equal @@ rz) &]]

%K nonn,base

%O 1,1

%A _Olivier Gérard_, Dec 12 2016