login
A279221
Expansion of Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)).
7
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 12, 12, 12, 12, 13, 13, 16, 16, 16, 16, 17, 17, 20, 20, 20, 20, 21, 21, 25, 25, 25, 25, 27, 27, 31, 31, 31, 31, 33, 33, 37, 37, 37, 37, 39, 39, 44, 44, 44, 45, 48, 48, 53, 53, 54, 55, 58, 58, 63, 63, 64, 65, 68, 68, 74
OFFSET
0,7
COMMENTS
Number of partitions of n into nonzero pentagonal pyramidal numbers (A002411).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)).
EXAMPLE
a(7) = 2 because we have [6, 1] and [1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax=90; CoefficientList[Series[Product[1/(1 - x^(k^2 (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 08 2016
STATUS
approved