

A247781


Least k such that 1/e  (1  1/k)^k < 1/n.


3



1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

a(n+1)  a(n) is in {0,1} for n >= 1.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..5000


EXAMPLE

The values of 1/e  (1  1/k)^k for n = 1..9 are approximately 0.367879, 0.117879, 0.0715831, 0.0514732, 0.0401994, 0.0329815, 0.0279628, 0.0242705, 0.02144, from which we see that the first 9 terms of A247781 are 1, 1, 2, 2, 2, 2, 2, 2, 3.


MATHEMATICA

z = 400; f[n_] := f[n] = Select[Range[z], 1/E  (1  1/#)^# < 1/n &, 1];
u = Flatten[Table[f[n], {n, 1, z}]] (*A247781*)
d1 = Flatten[Position[Differences[u], 0]] (*A247782*)
d2 = Flatten[Position[Differences[u], 1]] (*A247783*)


CROSSREFS

Cf. A247782, A247783, A247778.
Sequence in context: A251550 A279221 A004052 * A051742 A134119 A064661
Adjacent sequences: A247778 A247779 A247780 * A247782 A247783 A247784


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Sep 24 2014


STATUS

approved



