The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278995 Hankel determinant H_n(F_3(x)) of the sequence F_3(x). 1
 1, -2, -4, 8, 16, -32, -64, 128, 4864, -9728, -37888, 223232, 446464, -1482752, 5586944, -11173888, -56557568, -2490368, -4980736, 472383488, -10851713024, 21703426048, 90592772096, -263779778560, -10023631585280, -4209210589970432, -50541367159422976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See Fu and Han (2016), Section 1, for precise definition. LINKS Hao Fu, G.-N. Han, Computer assisted proof for Apwenian sequences related to Hankel determinants, arXiv preprint arXiv:1601.04370 [math.NT], 2016. MAPLE F_3 := proc(n)     option remember ;     local v, x;     v := 1-x-x^2 ;     g := 1;     for p from 0 do         g := g*subs(x=x^(3^p), v) ;         if 3^p > n then             break;         end if;     end do:     coeff(g, x, n) ; end proc: A278995 := proc(n)     local H, i, j ;     H := Matrix(n, n) ;     for i from 0 to n-1 do     for j from 0 to n-1 do         H[i+1, j+1] := F_3(i+j) ;     end do:     end do:     LinearAlgebra[Determinant](H) ; end proc: seq(A278995(n), n=1..40) ; MATHEMATICA F3[n_] := F3[n] = Module[{v, x}, v[x_] := 1 - x - x^2; g = 1; For[p = 0, True, p++, g = g*v[x^(3^p)]; If[3^p>n, Break[]]]; Coefficient[g, x, n]]; a[n_] := Module[{H}, Do[H[i+1, j+1] = F3[i+j], {i, 0, n-1}, {j, 0, n-1}]; Det[Array[H, {n, n}]]]; Array[a, 40] (* Jean-François Alcover, Dec 03 2017, translated from Maple *) CROSSREFS Sequence in context: A079838 A109912 A079845 * A117302 A265407 A023422 Adjacent sequences:  A278992 A278993 A278994 * A278996 A278997 A278998 KEYWORD sign AUTHOR N. J. A. Sloane, Dec 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 21:32 EDT 2021. Contains 346455 sequences. (Running on oeis4.)