login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278835
Prime factors (counting multiplicity) of 10^10^10^10^2 - 1.
1
3, 3, 11, 17, 41, 73, 101, 137, 251, 257, 271, 353, 401, 449, 641, 751, 1201, 1409, 1601, 3541, 4001, 4801, 5051, 9091, 10753, 15361, 16001, 19841, 21001, 21401, 24001, 25601, 27961, 37501, 40961, 43201, 60101, 62501, 65537, 69857, 76001, 76801, 160001, 162251, 163841, 307201, 453377, 524801, 544001, 670001, 952001, 976193, 980801
OFFSET
1,1
COMMENTS
From Jon E. Schoenfield, Dec 02 2016, paraphrasing information from the Munafo link: (Start)
The decimal expansion of 10^10^10^10^2 - 1 would be 1 googolplex digits long, with each digit a 9. Many factors of this number can be identified using simple facts of modular arithmetic.
Since its digits are all 9's, it is divisible by 9=3*3. Since its digits are all 9's and the number of digits is even, it is divisible by 99 (as are 9999=99*101, 999999=99*10101, 99999999=99*1010101, etc.), and thus divisible by 11.
By the same principle, it is divisible by 9999, 99999, 99999999, and by any other number whose decimal expansion consists of k 9's where k is of the form 2^a * 5^b, where a and b are nonnegative integers up to 10^100 (see A003592) and all their divisors. Additional factors can be found using Fermat's Little Theorem.
Consequently, a large number of factors of 10^10^10^10^2 - 1 are known. (End)
EXAMPLE
10^10^10^10^2 - 1 = 10^10^10^100 - 1 = 999...999 (a total of a googolplex of nines).
CROSSREFS
Cf. A227246.
Sequence in context: A027416 A281905 A347521 * A163932 A007022 A011950
KEYWORD
nonn,fini
AUTHOR
STATUS
approved