|
|
A278785
|
|
Primes p such that prime(p-2) + prime(p-1) + prime(p+1) is prime.
|
|
1
|
|
|
7, 17, 19, 29, 31, 37, 47, 53, 61, 67, 79, 83, 107, 127, 137, 157, 173, 179, 193, 199, 211, 229, 271, 277, 307, 331, 359, 379, 409, 419, 421, 433, 439, 443, 499, 503, 509, 523, 547, 571, 587, 619, 631, 653, 673, 677, 701, 709, 719, 727, 739, 751, 787, 823
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
31 is a member because p(n-2)=23 plus p(n-1)=29 plus p(n+1)=37 equals 89 which is prime.
|
|
MATHEMATICA
|
Select[Partition[Prime[Range[6000]], 4, 1], PrimeQ[First[#]+#[[2]]+ Last[ #]]&] [[All, 3]]
|
|
PROG
|
(PARI) is(n)=if(n<7 || !isprime(n), return(0)); my(p=prime(n-2), q=nextprime(p+1)); isprime(nextprime(n+1)+p+q) \\ Charles R Greathouse IV, Nov 28 2016
|
|
CROSSREFS
|
Sequence in context: A198032 A175901 A140566 * A156005 A106122 A106123
Adjacent sequences: A278782 A278783 A278784 * A278786 A278787 A278788
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Harvey P. Dale, Nov 28 2016
|
|
STATUS
|
approved
|
|
|
|