login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278340
Number of partitions of n*(n+1)/2 into distinct squares.
5
1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 3, 4, 3, 4, 4, 3, 4, 9, 14, 18, 19, 8, 16, 25, 27, 47, 37, 55, 83, 66, 92, 100, 108, 214, 189, 201, 303, 334, 535, 587, 587, 689, 764, 908, 1278, 1494, 1904, 2369, 2744, 2970, 3269, 3805, 4780, 6701, 7744, 9120, 10582, 11082
OFFSET
0,10
LINKS
FORMULA
a(n) = [x^(n*(n+1)/2)] Product_{i>=1} (1+x^(i^2)).
a(n) = A033461(A000217(n)).
EXAMPLE
a(9) = 2: [25,16,4], [36,9].
a(10) = 1: [25,16,9,4,1].
a(11) = 3: [36,16,9,4,1], [36,25,4,1], [49,16,1].
a(12) = 4: [36,25,16,1], [49,16,9,4], [49,25,4], [64,9,4,1]
MAPLE
b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
`if`(n=m, 1, b(n, i-1)+ `if`(i^2>n, 0,
b(n-i^2, i-1)))))(i*(i+1)*(2*i+1)/6)
end:
a:= n-> (m-> b(m, isqrt(m)))(n*(n+1)/2):
seq(a(n), n=0..80);
MATHEMATICA
b[n_, i_] := b[n, i] = (If[n > #, 0, If[n == #, 1, b[n, i - 1] + If[i^2 > n, 0, b[n - i^2, i - 1]]]]) &[i*(i + 1)*(2*i + 1)/6];
a[n_] := b[#, Floor @ Sqrt[#]] &[n*(n + 1)/2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 18 2016
STATUS
approved