login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n*(n+1)/2 into distinct squares.
5

%I #15 May 20 2018 11:35:59

%S 1,1,0,0,1,0,1,0,1,2,1,3,4,3,4,4,3,4,9,14,18,19,8,16,25,27,47,37,55,

%T 83,66,92,100,108,214,189,201,303,334,535,587,587,689,764,908,1278,

%U 1494,1904,2369,2744,2970,3269,3805,4780,6701,7744,9120,10582,11082

%N Number of partitions of n*(n+1)/2 into distinct squares.

%H Alois P. Heinz, <a href="/A278340/b278340.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = [x^(n*(n+1)/2)] Product_{i>=1} (1+x^(i^2)).

%F a(n) = A033461(A000217(n)).

%e a(9) = 2: [25,16,4], [36,9].

%e a(10) = 1: [25,16,9,4,1].

%e a(11) = 3: [36,16,9,4,1], [36,25,4,1], [49,16,1].

%e a(12) = 4: [36,25,16,1], [49,16,9,4], [49,25,4], [64,9,4,1]

%p b:= proc(n, i) option remember; (m-> `if`(n>m, 0,

%p `if`(n=m, 1, b(n, i-1)+ `if`(i^2>n, 0,

%p b(n-i^2, i-1)))))(i*(i+1)*(2*i+1)/6)

%p end:

%p a:= n-> (m-> b(m, isqrt(m)))(n*(n+1)/2):

%p seq(a(n), n=0..80);

%t b[n_, i_] := b[n, i] = (If[n > #, 0, If[n == #, 1, b[n, i - 1] + If[i^2 > n, 0, b[n - i^2, i - 1]]]]) &[i*(i + 1)*(2*i + 1)/6];

%t a[n_] := b[#, Floor @ Sqrt[#]] &[n*(n + 1)/2];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, May 20 2018, translated from Maple *)

%Y Cf. A000217, A000290, A033461, A278339.

%K nonn

%O 0,10

%A _Alois P. Heinz_, Nov 18 2016