|
|
A144254
|
|
Eigentriangle by rows, termwise products of A078812 and its eigensequence, A125274.
|
|
0
|
|
|
1, 2, 1, 3, 4, 3, 4, 10, 18, 10, 5, 20, 63, 80, 42, 6, 35, 168, 360, 420, 210, 7, 56, 378, 1200, 2310, 2520, 1199, 8, 84, 756, 3300, 9240, 16380, 16786, 7670, 9, 120, 1386, 7920, 30030, 76440, 125895, 122720, 54224, 10, 165, 2376, 17160, 84084, 286650
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Right border A144253 = A125274, the eigensequence of A078812: (1, 1, 3, 10, 42, 210, 1199,...).
Row sums = A125274 shifted.
Sum of row n terms = rightmost term of next row.
|
|
LINKS
|
Table of n, a(n) for n=1..51.
|
|
FORMULA
|
Eigensequence by rows, T(n,k) = A078812(n,k) * A125274(k).
|
|
EXAMPLE
|
First few rows of the triangle =
1;
2, 1;
3, 4, 3;
4, 10, 18, 10;
5, 20, 63, 80, 42;
6, 35, 168, 360, 420, 210;
7, 56, 378, 1200, 2310, 2520, 1199;
...
Triangle A078812 begins:
1;
2, 1;
3, 4, 1;
4, 10, 6, 1;
5, 20, 21, 8, 1;
...
Its eigensequence = A125274: (1, 1, 3, 10, 42, 210, 1199,...).
Row 3 of triangle A144253 = termwise products of (4, 10, 6, 1) and (1, 1, 3, 10) = (4*1, 10*1, 6*3, 1*10).
|
|
CROSSREFS
|
A078812, Cf. A125274
Sequence in context: A278340 A324749 A022466 * A133310 A077608 A002124
Adjacent sequences: A144251 A144252 A144253 * A144255 A144256 A144257
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Gary W. Adamson, Sep 16 2008
|
|
STATUS
|
approved
|
|
|
|