login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278095
Number of n X 2 0..3 arrays with every element plus 1 mod 4 equal to some element at offset (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero.
1
0, 2, 10, 58, 334, 1910, 10910, 62314, 355898, 2032630, 11608866, 66301138, 378662314, 2162634690, 12351344662, 70541601526, 402880631914, 2300951495750, 13141306298158, 75053268849534, 428647886076278, 2448114693124250
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - a(n-2) - 3*a(n-3) - 3*a(n-4) - 6*a(n-5) + 2*a(n-7).
Empirical g.f.: 2*x^2*(1 - x + x^3) / (1 - 6*x + x^2 + 3*x^3 + 3*x^4 + 6*x^5 - 2*x^7). - Colin Barker, Feb 07 2019
EXAMPLE
Some solutions for n=4:
..0..3. .0..3. .0..1. .0..1. .0..3. .0..1. .0..3. .0..1. .0..3. .0..3
..1..2. .1..2. .3..2. .3..2. .1..2. .1..2. .1..0. .3..2. .1..2. .1..0
..1..1. .2..1. .3..0. .2..3. .0..1. .0..3. .2..3. .0..3. .0..3. .2..3
..0..0. .3..0. .2..1. .1..0. .0..0. .3..2. .1..2. .1..2. .2..1. .2..1
CROSSREFS
Column 2 of A278099.
Sequence in context: A371770 A369487 A248403 * A075870 A074608 A086871
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 12 2016
STATUS
approved