login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086871
Row sums of A059450.
3
1, 2, 10, 58, 370, 2514, 17850, 130890, 983650, 7536418, 58648810, 462306266, 3683602130, 29620138994, 240059315610, 1958940281322, 16081662931650, 132723191430210, 1100568370427850, 9164925012016506, 76612776253995570
OFFSET
0,2
COMMENTS
Hankel transform is A165928. - Paul Barry, Sep 30 2009
Number of skew Dyck paths of semilength n with the down steps coming in two colors. - David Scambler, Jun 21 2013
LINKS
C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28.
J. Machacek, Lattice walks ending on a coordinate hyperlane avoiding backtracking and repeats, arXiv:2105.02417 [math.CO], 2021. See Thm. 4.4 G(x,E^1).
FORMULA
a(n) = 2*A059231(n), if n>0.
G.f.: (1 - x - sqrt((1 - x) * (1 - 9*x))) / (4*x) = 2 / (1 + sqrt((1 - 9*x) / (1 - x))) =: y satisfies 0 = (1 - x) * (1 - y) + 2*x*y^2. - Michael Somos, Mar 06 2004
Moment representation: a(n) = (1/(4*Pi))*Integral_{x=1..9} x^n*sqrt(-x^2+10x-9)/x+(1/2)*0^n. - Paul Barry, Sep 30 2009
D-finite with recurrence Recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - 9*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 3^(2*n+1)/(2*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(2*x) - 1/2 + G(0) where G(k) = 1 - 1/(x + x/(1 + 1/G(k+1) )) ; (continued fraction,3-step). - Sergei N. Gladkovskii, Nov 29 2012
EXAMPLE
G.f. = 1 + 2*x + 10*x^2 + 58*x^3 + 370*x^4 + 2514*x^5 + 17850*x^6 + 130890*x^7 + ...
MATHEMATICA
Table[SeriesCoefficient[2/(1+Sqrt[(1-9*x)/(1-x)]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 2 / (1 + sqrt((1 - 9*x) / (1 - x) + x * O(x^n))), n))}; /* Michael Somos, Mar 06 2004 */
(PARI) {a(n) = if( n<1, n==0, n++; 2 * polcoeff( serreverse( x * (1 - 4*x) / (1 - 3*x) + x * O(x^n)), n))}; /* Michael Somos, Mar 06 2004 */
CROSSREFS
Sequence in context: A278095 A075870 A074608 * A108450 A293111 A112369
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 16 2003
EXTENSIONS
More terms from Ray Chandler, Sep 17 2003
STATUS
approved