The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278049 a(n) = 3*(Sum_{k=1..n} phi(k)) - 1, where phi = A000010. 1
 2, 5, 11, 17, 29, 35, 53, 65, 83, 95, 125, 137, 173, 191, 215, 239, 287, 305, 359, 383, 419, 449, 515, 539, 599, 635, 689, 725, 809, 833, 923, 971, 1031, 1079, 1151, 1187, 1295, 1349, 1421, 1469, 1589, 1625, 1751, 1811, 1883, 1949, 2087, 2135, 2261, 2321, 2417, 2489, 2645, 2699, 2819, 2891, 2999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 J. Lehner and M. Newman, Sums involving Farey fractions, Acta Arithmetica 15.2 (1969): 181-187. See Eq. (19). FORMULA G.f.: (1/(1 - x)) * (-x + 3 * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020 MAPLE with(numtheory); f:=n->3*add(phi(r), r=1..n)-1; [seq(f(r), r=1..50)]; MATHEMATICA Table[3 Sum[EulerPhi@ k, {k, n}] - 1, {n, 57}] (* Michael De Vlieger, Dec 16 2016 *) PROG (Python) from functools import lru_cache @lru_cache(maxsize=None) def A278049(n): # based on second formula in A018805     if n == 0:         return -1     c, j = 0, 2     k1 = n//j     while k1 > 1:         j2 = n//k1 + 1         c += (j2-j)*(2*A278049(k1)-1)//3         j, k1 = j2, n//j2     return 3*(n*(n-1)-c+j)//2 - 1 # Chai Wah Wu, Mar 25 2021 CROSSREFS Cf. A000010, A002088. Cf. m*(Sum_{k=1..n} phi(k)) - 1: A015614 (m=1), A018805 (m=2), this sequence (m=3). Sequence in context: A153222 A023222 A289250 * A007491 A124850 A156850 Adjacent sequences:  A278046 A278047 A278048 * A278050 A278051 A278052 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 18:30 EDT 2021. Contains 346376 sequences. (Running on oeis4.)