login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278036
Number of ways to construct a triangle with longest side n using unit-length straws of two colors for the sides.
2
4, 40, 416, 3808, 33472, 282752, 2339072, 19077632, 154350592, 1242703872, 9977483264, 79979520000, 640542392320, 5127428276224, 41032860631040, 328320884015104, 2626816281149440, 21015595535826944, 168129300578435072, 1345053647156805632, 10760510547561545728
OFFSET
1,1
LINKS
Sergei Abramovich, Combinatorics of the Triangle Inequality: From Straws to Experimental Mathematics for Teachers, Spreadsheets in Education (eJSiE), Vol. 9, Issue 1, Article 1, 2016.
FORMULA
G.f.: 4*x*(1 - 8*x + 28*x^2 - 24*x^3 - 32*x^4) / ((1 - 2*x) * (1 - 4*x)^2 * (1 - 8*x) * (1 - 8*x^2)). - Colin Barker, Nov 16 2016
MATHEMATICA
CoefficientList[ Series[(4 (-1 + 8x - 28x^2 + 24x^3 + 32x^4))/((-1 + 4x)^2 (-1 + 10x - 8x^2 - 80x^3 + 128x^4)), {x, 0, 20}], x] (* or *)LinearRecurrence[{18, -104, 144, 640, -2304, 2048}, {4, 40, 416, 3808, 33472, 282752}, 21] (* Robert G. Wilson v, Nov 16 2016 *)
PROG
(PARI) Vec(4*x*(1-8*x+28*x^2-24*x^3-32*x^4)/((1-2*x)*(1-4*x)^2*(1-8*x)*(1-8*x^2)) + O(x^30)) \\ Colin Barker, Nov 16 2016
CROSSREFS
Cf. A278037.
Sequence in context: A299867 A093141 A220965 * A221588 A114468 A264112
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 14 2016
EXTENSIONS
More terms from Lars Blomberg, Nov 16 2016
STATUS
approved