login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to construct a triangle with longest side n using unit-length straws of two colors for the sides.
2

%I #17 Nov 22 2020 08:20:04

%S 4,40,416,3808,33472,282752,2339072,19077632,154350592,1242703872,

%T 9977483264,79979520000,640542392320,5127428276224,41032860631040,

%U 328320884015104,2626816281149440,21015595535826944,168129300578435072,1345053647156805632,10760510547561545728

%N Number of ways to construct a triangle with longest side n using unit-length straws of two colors for the sides.

%H Lars Blomberg, <a href="/A278036/b278036.txt">Table of n, a(n) for n = 1..100</a>

%H Sergei Abramovich, <a href="https://sie.scholasticahq.com/article/4653-combinatorics-of-the-triangle-inequality-from-straws-to-experimental-mathematics-for-teachers">Combinatorics of the Triangle Inequality: From Straws to Experimental Mathematics for Teachers</a>, Spreadsheets in Education (eJSiE), Vol. 9, Issue 1, Article 1, 2016.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (18,-104,144,640,-2304,2048).

%F G.f.: 4*x*(1 - 8*x + 28*x^2 - 24*x^3 - 32*x^4) / ((1 - 2*x) * (1 - 4*x)^2 * (1 - 8*x) * (1 - 8*x^2)). - _Colin Barker_, Nov 16 2016

%t CoefficientList[ Series[(4 (-1 + 8x - 28x^2 + 24x^3 + 32x^4))/((-1 + 4x)^2 (-1 + 10x - 8x^2 - 80x^3 + 128x^4)), {x, 0, 20}], x] (* or *)LinearRecurrence[{18, -104, 144, 640, -2304, 2048}, {4, 40, 416, 3808, 33472, 282752}, 21] (* _Robert G. Wilson v_, Nov 16 2016 *)

%o (PARI) Vec(4*x*(1-8*x+28*x^2-24*x^3-32*x^4)/((1-2*x)*(1-4*x)^2*(1-8*x)*(1-8*x^2)) + O(x^30)) \\ _Colin Barker_, Nov 16 2016

%Y Cf. A278037.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, Nov 14 2016

%E More terms from _Lars Blomberg_, Nov 16 2016