login
A277722
a(n) = floor(n*tau^2) where tau is the tribonacci constant (A058265).
9
0, 3, 6, 10, 13, 16, 20, 23, 27, 30, 33, 37, 40, 43, 47, 50, 54, 57, 60, 64, 67, 71, 74, 77, 81, 84, 87, 91, 94, 98, 101, 104, 108, 111, 115, 118, 121, 125, 128, 131, 135, 138, 142, 145, 148, 152, 155, 158, 162, 165, 169, 172, 175, 179, 182, 186, 189, 192, 196, 199, 202, 206, 209, 213, 216, 219
OFFSET
0,2
LINKS
A. J. Hildebrand, Junxian Li, Xiaomin Li and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
MAPLE
A277722 := proc(n)
a276800 := 3.3829757679062374941227085364550345869493820437485761820195626772353718960099402922235933340043661396041006 ;
floor(n*a276800) ;
end proc:
seq(A277722(n), n=0..100) ; # R. J. Mathar, Nov 02 2016
MATHEMATICA
A277722[n_] := Floor[n (1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^2]; Array[A277722, 66, 0] (* JungHwan Min, Nov 06 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 30 2016
STATUS
approved