

A277316


Primefactorization representation of the primeth Sternpolynomial: a(n) = A260443(A000040(n)).


6



3, 6, 18, 30, 270, 450, 630, 6750, 9450, 22050, 2310, 3543750, 4961250, 53156250, 727650, 173643750, 25467750, 2668050, 40020750, 891371250, 9550406250, 1400726250, 3190703906250, 467969906250, 173423250, 16378946718750, 1715889656250, 245684200781250, 25738344843750, 8497739250, 510510, 6763506750, 66919696593750
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If the conjecture by Ulas and Ulas is true, then all these terms can be found from A206284 and then this is also a subsequence of A277318.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..1028
Maciej Ulas and Oliwia Ulas, On certain arithmetic properties of Stern polynomials, arXiv:1102.5109 [math.CO], 2011.


FORMULA

a(n) = A260443(A000040(n)).
Other identities.
For all n >= 1, a(A059305(n)) = A002110(A000043(n)).


PROG

(Scheme) (define (A277316 n) (A260443 (A000040 n)))


CROSSREFS

Cf. A000040, A206284, A260443.
Cf. A277317 (same sequence sorted into ascending order) is a subsequence of A277319.
Differs from A277318 for the first time at n=10, where A277318(10) = 15750, a term which is missing from this sequence.
Sequence in context: A103100 A277317 A277318 * A101726 A034457 A268529
Adjacent sequences: A277313 A277314 A277315 * A277317 A277318 A277319


KEYWORD

nonn


AUTHOR

Antti Karttunen, Oct 10 2016


STATUS

approved



