%I
%S 3,6,18,30,270,450,630,6750,9450,22050,2310,3543750,4961250,53156250,
%T 727650,173643750,25467750,2668050,40020750,891371250,9550406250,
%U 1400726250,3190703906250,467969906250,173423250,16378946718750,1715889656250,245684200781250,25738344843750,8497739250,510510,6763506750,66919696593750
%N Primefactorization representation of the primeth Sternpolynomial: a(n) = A260443(A000040(n)).
%C If the conjecture by Ulas and Ulas is true, then all these terms can be found from A206284 and then this is also a subsequence of A277318.
%H Antti Karttunen, <a href="/A277316/b277316.txt">Table of n, a(n) for n = 1..1028</a>
%H Maciej Ulas and Oliwia Ulas, <a href="http://arxiv.org/abs/1102.5109">On certain arithmetic properties of Stern polynomials</a>, arXiv:1102.5109 [math.CO], 2011.
%F a(n) = A260443(A000040(n)).
%F Other identities.
%F For all n >= 1, a(A059305(n)) = A002110(A000043(n)).
%o (Scheme) (define (A277316 n) (A260443 (A000040 n)))
%Y Cf. A000040, A206284, A260443.
%Y Cf. A277317 (same sequence sorted into ascending order) is a subsequence of A277319.
%Y Differs from A277318 for the first time at n=10, where A277318(10) = 15750, a term which is missing from this sequence.
%K nonn
%O 1,1
%A _Antti Karttunen_, Oct 10 2016
