The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277078 Triangular array similar to A255935 but with 0's and 2's swapped in the trailing diagonal. The columns alternate in signs. 1
 2, 1, 0, 1, -2, 2, 1, -3, 3, 0, 1, -4, 6, -4, 2, 1, -5, 10, -10, 5, 0, 1, -6, 15, -20, 15, -6, 2, 1, -7, 21, -35, 35, -21, 7, 0, 1, -8, 28, -56, 70, -56, 28, -8, 2, 1, -9, 36, -84, 126, -126, 84, -36, 9, 0, 1, -10, 45, -120, 210, -252, 210, -120, 45, -10, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n)= 2, 1,  0, 1, -2, 2, 1, -3, 3,  0, 1, -4, 6, -4, 2, etc. transforms every sequence s(n) in an autosequence of the second kind via the multiplication by the triangle s0,           T2 s0, s1, s0, s1, s2, s0, s1, s2, s3, etc. which is the reluctant form of s(n). Example. s(n) = A131577(n) = 0, 1, 2, 4, ... . The multiplication gives 0, 0, 2, 3, 8, 15, 32, 63, ... = 0 followed by A166920. a(n) comes from alternate sum and difference of s(n) and t(n), its inverse binomial transform. In the example (t(n) = periodic 2: repeat 0, 1) the first terms are: 0+0, 1-1, 2+0, 4-1, 8+0, 16-1, 32+0, 64-1, ... . LINKS FORMULA a(n) = A007318(n) - A197870(n+1). MATHEMATICA a[n_, k_] := If[k == n, 2 - 2*Mod[n, 2], (-1)^k*Binomial[n, k]]; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 16 2016 *) CROSSREFS Cf. A000035, A007318, A054977, A131577, A166920, A197870, A255935. Sequence in context: A090723 A027357 A256479 * A283715 A078808 A030363 Adjacent sequences:  A277075 A277076 A277077 * A277079 A277080 A277081 KEYWORD sign,tabl AUTHOR Paul Curtz, Oct 23 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 19:34 EDT 2021. Contains 347694 sequences. (Running on oeis4.)