login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A276890
Number A(n,k) of ordered set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 10, 24, 0, 1, 1, 3, 13, 44, 120, 0, 1, 1, 3, 13, 62, 234, 720, 0, 1, 1, 3, 13, 75, 352, 1470, 5040, 0, 1, 1, 3, 13, 75, 466, 2348, 10656, 40320, 0, 1, 1, 3, 13, 75, 541, 3272, 17880, 87624, 362880, 0
OFFSET
0,9
COMMENTS
Column k > 0 is asymptotic to exp(k-1) * n!. - Vaclav Kotesovec, Sep 22 2016
LINKS
FORMULA
A(n,k) = Sum_{j=0..k} A276891(n,j).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 6, 10, 13, 13, 13, 13, 13, ...
0, 24, 44, 62, 75, 75, 75, 75, ...
0, 120, 234, 352, 466, 541, 541, 541, ...
0, 720, 1470, 2348, 3272, 4142, 4683, 4683, ...
0, 5040, 10656, 17880, 26032, 34792, 42610, 47293, ...
MAPLE
b:= proc(n, m, l) option remember; `if`(n=0, m!,
add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
`if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, n!, b(n, 0, [0$(k-1)]))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[k==0, If[n==0, 1, 0], If[k==1, n!, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives: A000670.
Sequence in context: A215086 A261440 A295684 * A276921 A339677 A333158
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 21 2016
STATUS
approved