OFFSET
0,13
COMMENTS
The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.
LINKS
Alois P. Heinz, Antidiagonals n = 0..40, flattened
Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
Wikipedia, Partition of a set
FORMULA
A(n,k) = Sum_{i=0..k} A276727(n,i).
EXAMPLE
A(3,2) = 3: 12|3, 1|23, 1|2|3.
A(4,3) = 10: 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4.
A(5,4) = 37: 1234|5, 123|45, 123|4|5, 124|35, 124|3|5, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 1|2345, 1|234|5, 1|235|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|345, 1|2|34|5, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 5, 5, 5, 5, 5, 5, ...
0, 1, 5, 10, 15, 15, 15, 15, 15, ...
0, 1, 8, 20, 37, 52, 52, 52, 52, ...
0, 1, 13, 42, 87, 151, 203, 203, 203, ...
0, 1, 21, 87, 208, 409, 674, 877, 877, ...
0, 1, 34, 179, 515, 1100, 2066, 3263, 4140, ...
MAPLE
b:= proc(n, m, l) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
`if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 16 2016
STATUS
approved