login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276719 Number A(n,k) of set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 5, 5, 1, 0, 1, 1, 2, 5, 10, 8, 1, 0, 1, 1, 2, 5, 15, 20, 13, 1, 0, 1, 1, 2, 5, 15, 37, 42, 21, 1, 0, 1, 1, 2, 5, 15, 52, 87, 87, 34, 1, 0, 1, 1, 2, 5, 15, 52, 151, 208, 179, 55, 1, 0, 1, 1, 2, 5, 15, 52, 203, 409, 515, 370, 89, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

LINKS

Alois P. Heinz, Antidiagonals n = 0..40, flattened

Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.

Wikipedia, Partition of a set

FORMULA

A(n,k) = Sum_{i=0..k} A276727(n,i).

EXAMPLE

A(3,2) = 3: 12|3, 1|23, 1|2|3.

A(4,3) = 10: 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4.

A(5,4) = 37: 1234|5, 123|45, 123|4|5, 124|35, 124|3|5, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 1|2345, 1|234|5, 1|235|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|345, 1|2|34|5, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.

Square array A(n,k) begins:

  1, 1,  1,   1,   1,    1,    1,    1,    1, ...

  0, 1,  1,   1,   1,    1,    1,    1,    1, ...

  0, 1,  2,   2,   2,    2,    2,    2,    2, ...

  0, 1,  3,   5,   5,    5,    5,    5,    5, ...

  0, 1,  5,  10,  15,   15,   15,   15,   15, ...

  0, 1,  8,  20,  37,   52,   52,   52,   52, ...

  0, 1, 13,  42,  87,  151,  203,  203,  203, ...

  0, 1, 21,  87, 208,  409,  674,  877,  877, ...

  0, 1, 34, 179, 515, 1100, 2066, 3263, 4140, ...

MAPLE

b:= proc(n, m, l) option remember; `if`(n=0, 1,

      add(b(n-1, max(m, j), [subsop(1=NULL, l)[],

      `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))

    end:

A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)

CROSSREFS

Columns k=0..10 give: A000007, A000012, A000045(n+1), A129847, A276720, A276721, A276722, A276723, A276724, A276725, A276726.

Main diagonal gives A000110.

A(n+1,n) gives A005493(n-1) for n>0.

Cf. A276727, A276837.

Sequence in context: A247506 A182172 A143841 * A276837 A269941 A035440

Adjacent sequences:  A276716 A276717 A276718 * A276720 A276721 A276722

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 16 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 22:12 EST 2021. Contains 349435 sequences. (Running on oeis4.)