login
A276837
Number A(n,k) of permutations of [n] such that for each cycle c the smallest integer interval containing all elements of c has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
11
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 6, 5, 1, 0, 1, 1, 2, 6, 12, 8, 1, 0, 1, 1, 2, 6, 24, 25, 13, 1, 0, 1, 1, 2, 6, 24, 60, 57, 21, 1, 0, 1, 1, 2, 6, 24, 120, 150, 124, 34, 1, 0, 1, 1, 2, 6, 24, 120, 360, 399, 268, 55, 1, 0
OFFSET
0,13
COMMENTS
The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.
LINKS
Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019
FORMULA
A(n,k+1) - A(n,k) = A263757(n,k) for n>0.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 6, 6, 6, 6, 6, 6, ...
0, 1, 5, 12, 24, 24, 24, 24, 24, ...
0, 1, 8, 25, 60, 120, 120, 120, 120, ...
0, 1, 13, 57, 150, 360, 720, 720, 720, ...
0, 1, 21, 124, 399, 1050, 2520, 5040, 5040, ...
0, 1, 34, 268, 1145, 3192, 8400, 20160, 40320, ...
CROSSREFS
Main diagonal gives A000142.
Sequence in context: A182172 A143841 A276719 * A269941 A035440 A029878
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 20 2016
STATUS
approved