The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261440 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1+x*P(n,x)^(1*n)+x^2*P(n,x)^(2*n) for n >= 0. 1
 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 4, 0, 1, 1, 4, 11, 9, 0, 1, 1, 5, 21, 46, 21, 0, 1, 1, 6, 34, 127, 207, 51, 0, 1, 1, 7, 50, 268, 833, 979, 127, 0, 1, 1, 8, 69, 485, 2299, 5763, 4797, 323, 0, 1, 1, 9, 91, 794, 5130, 20838, 41401, 24138, 835, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS The terms define the array A(n,k):   n\k:  0  1   2    3    4     5      6      7       8        9   10  ...     0:  1  1   1    0    0     0      0      0       0        0    0  ...     1:  1  1   2    4    9    21     51    127     323      835  ...     2:  1  1   3   11   46   207    979   4797   24138   123998  ...     3:  1  1   4   21  127   833   5763  41401  305877  2309385  ...     4:  1  1   5   34  268  2299  20838  ...     5:  1  1   6   50  485  5130  ...     6:  1  1   7   69  794  ...     7:  1  1   8   91  ...     8:  1  1   9  116  ...     9:  1  1  10  144  ...    10:  1  ...   etc. For row 1 see A001006, for row 2 see A006605, and for row 3 see A255673. Be careful if you use the formulas for n < 0 (DIV0, signed values)! Nevertheless, it might be interesting ... Conjecture: The A(n,k), here n > 0, are the number of lattice paths, if (a) length of path is k*n for the k-th term of row n, (b) allowed steps are (1,-1), (1,-1+n) and (1,-1+2*n) for terms of row n, (c) you start at (0,0), end at (k*n,0), and (d) never cross the x-axis. This is proved for row 1 (A001006) and row 2 (A006605). Conjecture: The coefficients B(m,n,k) of the P(n,x)^m (see the formula below), m > 0 and n > 0, are the number of lattice paths, if (a) length of path is k*n+m-1 (k-th coefficient of P(n,x)^m), (b) allowed steps are (1,-1), (1,-1+n), and (1,-1+2*n), (c) you start at (0,m-1), end at (k*n+m-1,0), and (d) never cross the x-axis. This is proved for B(1,1,k) (A001006), and B(1,2,k) (A006605). - Werner Schulte, Aug 30 2015 LINKS FORMULA A(n,k) = 1/(n*k+1)*Sum_{j=0..k} (-1)^j*binomial(n*k+1, j)*binomial(2*n*k+2-2*j, k-j) (conjectured). The g.f. P(n,x) of row n of the array A(n,k) satisfy:   P(n,x) = (1 + x*P(n,x)^n)^2/(1 + x*P(n,x)^(n-1)), n > 0.   P(n,x) = P(n-1,x*P(n,x)), n > 0.   P(n,x) = P(n-2,x*P(n,x)^2), n > 1.   etc.   P(n,x) = P(0,x*P(n,x)^n), n >= 0. The coefficients B(m,n,k) of the P(n,x)^m are:   B(m,n,k) = m/(n*k + m)*(Sum_{j=0..k} (-1)^j*binomial(n*k+m, j)* binomial(2*n*k + 2*m - 2*j, k - j)), if m > 0, and n > 0 (conjectured). A(n,0) = A(n,1) = 1, n >= 0. A(n,2) = n+1, n >= 0. A(n,3) = n*(3*n + 5)/2, n >= 0. A(n,4) = n*(8*n^2 + 18*n + 1)/3, n >= 0. A(n,5) = n*(125*n^3 + 350*n^2 + 55*n - 26)/24, n >= 0. P(n,x) = exp(Sum_{k>=1} 1/(n*k)*(Sum{j=0..k} (-1)^j*binomial(n*k,j)* binomial(2*n*k-2*j,k-j))) for n > 0 (conjectured). - Werner Schulte, Sep 20 2015 P(n,x/(1+x+x^2)^n) = 1+x+x^2 for n >= 0. - Werner Schulte, Oct 20 2015 EXAMPLE The terms of the array A(n,k) read by upwards antidiagonals define the triangle T(n,m) = A(n-m,m) for 0 <= m <= n, i.e.   1;   1, 1;   1, 1, 1;   1, 1, 2,  0;   1, 1, 3,  4,  0;   1, 1, 4, 11,  9,  0;   1, 1, 5, 21, 46, 21, 0;   etc. CROSSREFS Cf. A001006, A006605, A255673. Sequence in context: A238270 A292521 A215086 * A295684 A276890 A276921 Adjacent sequences:  A261437 A261438 A261439 * A261441 A261442 A261443 KEYWORD nonn,tabl,easy AUTHOR Werner Schulte, Aug 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 00:57 EDT 2021. Contains 346346 sequences. (Running on oeis4.)