login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A276875
Sums-complement of the Beatty sequence for e.
3
1, 4, 7, 12, 15, 18, 23, 26, 31, 34, 37, 42, 45, 50, 53, 56, 61, 64, 69, 72, 75, 80, 83, 88, 91, 94, 99, 102, 105, 110, 113, 118, 121, 124, 129, 132, 137, 140, 143, 148, 151, 156, 159, 162, 167, 170, 175, 178, 181, 186, 189, 194, 197, 200, 205, 208, 211, 216
OFFSET
1,2
COMMENTS
See A276871 for a definition of sums-complement and guide to related sequences.
EXAMPLE
The Beatty sequence for e is A022843 = (0,2,5,8,10,13,16,...), with difference sequence s = A276859 = (2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,5,6,8,9,10,12,13,...), with complement (1,4,7,12,15,...).
MATHEMATICA
z = 500; r = E; b = Table[Floor[k*r], {k, 0, z}]; (* A022843 *)
t = Differences[b]; (* A276859 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276875 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 27 2016
STATUS
approved