login
A276873
Sums-complement of the Beatty sequence for sqrt(7).
3
1, 4, 9, 12, 17, 20, 25, 28, 33, 36, 41, 46, 49, 54, 57, 62, 65, 70, 73, 78, 81, 86, 91, 94, 99, 102, 107, 110, 115, 118, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 173, 176, 181, 184, 189, 192, 197, 200, 205, 208, 213, 218, 221, 226, 229
OFFSET
1,2
COMMENTS
See A276871 for a definition of sums-complement and guide to related sequences.
LINKS
EXAMPLE
The Beatty sequence for sqrt(7) is A022841 = (0,2,5,7,10,13,...), with difference sequence s = A276857 = (2,3,2,3,3,2,3,3,2,3,3,2,3,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,6,7,8,10,11,13,...), with complement (1,4,9,12,17,...).
MATHEMATICA
z = 500; r = Sqrt[7]; b = Table[Floor[k*r], {k, 0, z}]; (* A022841 *)
t = Differences[b]; (* A276857 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276873 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 27 2016
STATUS
approved