login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276864 First differences of the Beatty sequence A001952 for 2 + sqrt(2). 4
3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Shifted by 1 (as one should) this is the unique fixed point of the morphism 3 -> 34, 4 -> 343. See A159684. - Michel Dekking, Aug 25 2019

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = floor(n*r) - floor(n*r - r), where r = 2 + sqrt(2), n >= 1.

a(n) = 2 + floor(n*sqrt(2)) - floor((n-1)*sqrt(2)). - Andrew Howroyd, Feb 15 2018

MATHEMATICA

z = 500; r = 2+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A001952 *)

Differences[b] (* A276864 *)

PROG

(PARI) a(n) = 2 + sqrtint(2*n^2) - sqrtint(2*(n-1)^2) \\ Andrew Howroyd, Feb 15 2018

(MAGMA) [Floor(n*(2 + Sqrt(2))) - Floor((n-1)*(2 + Sqrt(2))): n in [1..100]]; // G. C. Greubel, Aug 16 2018

CROSSREFS

Cf. A001952, A006337, A276882.

Sequence in context: A091282 A202708 A027684 * A236442 A046537 A167596

Adjacent sequences:  A276861 A276862 A276863 * A276865 A276866 A276867

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Sep 24 2016

EXTENSIONS

Name corrected by Michel Dekking, Aug 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 10:11 EDT 2020. Contains 337166 sequences. (Running on oeis4.)