login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276847
Expansion of eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12) in powers of q.
1
1, 0, -1, 0, -2, 0, 0, 0, 1, 0, 4, 0, -2, 0, 2, 0, 2, 0, -4, 0, 0, 0, -8, 0, -1, 0, -1, 0, 6, 0, 8, 0, -4, 0, 0, 0, 6, 0, 2, 0, -6, 0, 4, 0, -2, 0, 0, 0, -7, 0, -2, 0, -2, 0, -8, 0, 4, 0, 4, 0, -2, 0, 0, 0, 4, 0, -4, 0, 8, 0, 8, 0, 10, 0, 1, 0, 0, 0, -8, 0, 1, 0
OFFSET
1,5
COMMENTS
The bisection of this sequence containing all nonzero terms is A030188.
Multiplicative. See A030188 for formula. - Andrew Howroyd, Jul 31 2018
LINKS
Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
FORMULA
a(4*n-3) = A271231(4*n-3), a(4*n-2) = 0, a(4*n-1) = -A271231(4*n-1), a(4*n) = 0.
G.f.: x * Product_{k>0} (1 - x^(2*k)) * (1 - x^(4*k)) * (1 - x^(6*k)) * (1 - x^(12*k)).
a(2*n+1) = A030188(n). - Michel Marcus, Sep 25 2016
Euler transform of period 12 sequence [0, -1, 0, -2, 0, -2, 0, -2, 0, -1, 0, -4, ...]. - Georg Fischer, Nov 17 2022
MATHEMATICA
CoefficientList[Series[QPochhammer[x^2] QPochhammer[x^4] QPochhammer[x^6] QPochhammer[x^12], {x, 0, 100}], x] (* Jan Mangaldan, Jan 04 2017 *)
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Seiichi Manyama, Sep 22 2016
STATUS
approved