login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276845
Numbers k such that (25*10^k - 73) / 3 is prime.
0
1, 2, 5, 6, 40, 47, 49, 58, 67, 142, 170, 173, 232, 530, 539, 559, 1651, 1858, 2695, 6257, 6714, 8854, 15066, 15091, 16890, 51366, 85249, 135906
OFFSET
1,2
COMMENTS
For k > 1, numbers k such that the digit 8 followed by k-2 occurrences of the digit 3 followed by the digits 09 is prime (see Example section).
a(29) > 2*10^5.
EXAMPLE
2 is in this sequence because (25*10^2 - 73) / 3 = 809 is prime.
Initial terms and associated primes:
a(1) = 1, 59;
a(2) = 2, 809;
a(3) = 5, 833309;
a(4) = 6, 8333309;
a(5) = 40, 83333333333333333333333333333333333333309, etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(25*10^# - 73) / 3] &]
PROG
(PARI) is(n) = ispseudoprime((25*10^n - 73) / 3); \\ Altug Alkan, Sep 20 2016
(Magma) [n: n in [0..500] | IsPrime((25*10^n - 73) div 3)]; // Vincenzo Librandi, Sep 22 2016
KEYWORD
nonn,more
AUTHOR
Robert Price, Sep 20 2016
EXTENSIONS
a(28) from Robert Price, Sep 22 2019
STATUS
approved