login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276827
Primes p such that the greatest prime factor of 3*p+1 is at most 5.
1
3, 5, 13, 53, 83, 853, 2083, 3413, 5333, 85333, 208333, 218453, 341333, 3495253, 5461333, 8533333, 13981013, 83333333, 853333333, 22369621333, 218453333333, 341333333333, 2236962133333, 3665038759253, 53333333333333, 91625968981333, 203450520833333, 1333333333333333
OFFSET
1,1
COMMENTS
Prime(i) such that A087273(i) <= 5.
LINKS
MAPLE
N = 10^20: # to get all terms <= N
Res:= {}:
for a from 0 to ilog2(floor((3*N+1)/5)) do
twoa:= 2^a;
for b from (a mod 2) by 2 do
p:= (twoa*5^b-1)/3;
if p > N then break fi;
if isprime(p) then
Res:= Res union {p};
fi
od od:
sort(convert(Res, list));
MATHEMATICA
Select[Prime@ Range[10^6], FactorInteger[3 # + 1][[-1, 1]] <= 5 &] (* Michael De Vlieger, Sep 19 2016 *)
PROG
(PARI) list(lim)=my(v=List(), s, t); lim=lim\1*3 + 1; for(i=0, logint(lim\2, 5), t=if(i%2, 2, 4)*5^i; while(t<=lim, if(isprime(p=t\3), listput(v, p)); t<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 19 2016
CROSSREFS
Cf. A087273.
Contains A093671, A093674, and A093676.
Sequence in context: A106879 A249762 A264812 * A034375 A081953 A181848
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 19 2016
STATUS
approved