Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Sep 20 2016 03:06:47
%S 3,5,13,53,83,853,2083,3413,5333,85333,208333,218453,341333,3495253,
%T 5461333,8533333,13981013,83333333,853333333,22369621333,218453333333,
%U 341333333333,2236962133333,3665038759253,53333333333333,91625968981333,203450520833333,1333333333333333
%N Primes p such that the greatest prime factor of 3*p+1 is at most 5.
%C Prime(i) such that A087273(i) <= 5.
%H Robert Israel, <a href="/A276827/b276827.txt">Table of n, a(n) for n = 1..1645</a>
%p N = 10^20: # to get all terms <= N
%p Res:= {}:
%p for a from 0 to ilog2(floor((3*N+1)/5)) do
%p twoa:= 2^a;
%p for b from (a mod 2) by 2 do
%p p:= (twoa*5^b-1)/3;
%p if p > N then break fi;
%p if isprime(p) then
%p Res:= Res union {p};
%p fi
%p od od:
%p sort(convert(Res,list));
%t Select[Prime@ Range[10^6], FactorInteger[3 # + 1][[-1, 1]] <= 5 &] (* _Michael De Vlieger_, Sep 19 2016 *)
%o (PARI) list(lim)=my(v=List(),s,t); lim=lim\1*3 + 1; for(i=0,logint(lim\2,5), t=if(i%2,2,4)*5^i; while(t<=lim, if(isprime(p=t\3), listput(v,p)); t<<=2)); Set(v) \\ _Charles R Greathouse IV_, Sep 19 2016
%Y Cf. A087273.
%Y Contains A093671, A093674, and A093676.
%K nonn
%O 1,1
%A _Robert Israel_, Sep 19 2016