login
A276756
Squarefree terms of A276655.
1
1, 21, 30, 979, 1411, 1463, 1547, 1742, 1947, 2059, 2090, 2210, 2318, 2405, 2419, 2491, 2703, 2886, 2945, 3182, 3243, 3534, 3567, 16102, 17654, 20559, 21243, 25543, 25705, 27145, 27307, 27805, 28045, 29323, 29370, 29631, 30485, 30846, 32574, 33366, 33465, 33654
OFFSET
1,2
COMMENTS
Except for the first term, products of distinct primes p_i such that Sum_{p_i} 0.p_i is an integer.
FORMULA
A005117 INTERSECT A276655.
PROG
(Python)
from fractions import Fraction
from sympy import factorint, primefactors
A276756_list = [1] + [n for n in range(2, 10**6) if max(factorint(n).values()) <= 1 and sum(Fraction(p, 10**len(str(p))) for p in primefactors(n)).denominator == 1]
CROSSREFS
Sequence in context: A187965 A318349 A228142 * A115433 A116096 A116116
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Sep 17 2016
STATUS
approved