login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276593
Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
4
8, 96, 960, 161280, 2903040, 638668800, 49816166400, 83691159552000, 2845499424768000, 1946321606541312000, 408727537373675520000, 48662619743783485440000, 124089680346647887872000000, 174221911206693634572288000000, 70734095949917615636348928000000
OFFSET
1,1
COMMENTS
A276592(n)/a(n) * Pi^(2*n) = Sum_{k>=1} 1/(2*k-1)^(2*n) > 1. So Pi^(2*n) > a(n)/A276592(n). - Seiichi Manyama, Sep 03 2018
LINKS
FORMULA
A276592(n)/a(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
A276592(n)/a(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - Seiichi Manyama, Sep 03 2018
EXAMPLE
From Seiichi Manyama, Sep 03 2018: (Start)
n | Pi^(2*n) | a(n)/A276592(n)
--+---------------+------------------------------------
1 | 9.8... | 8
2 | 97.4... | 96
3 | 961.3... | 960
4 | 9488.5... | 161280/17 = 9487.0...
5 | 93648.0... | 2903040/31 = 93646.4...
6 | 924269.1... | 638668800/691 = 924267.4...
7 | 9122171.1... | 49816166400/5461 = 9122169.2... (End)
MAPLE
seq(denom(sum(1/(2*k-1)^(2*n), k=1..infinity)/Pi^(2*n)), n=1..22);
MATHEMATICA
a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1), {x, 0, 2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s), {s, 1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Martin Renner, Sep 07 2016
STATUS
approved