Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Apr 02 2023 00:42:43
%S 8,96,960,161280,2903040,638668800,49816166400,83691159552000,
%T 2845499424768000,1946321606541312000,408727537373675520000,
%U 48662619743783485440000,124089680346647887872000000,174221911206693634572288000000,70734095949917615636348928000000
%N Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
%C A276592(n)/a(n) * Pi^(2*n) = Sum_{k>=1} 1/(2*k-1)^(2*n) > 1. So Pi^(2*n) > a(n)/A276592(n). - _Seiichi Manyama_, Sep 03 2018
%H Seiichi Manyama, <a href="/A276593/b276593.txt">Table of n, a(n) for n = 1..225</a>
%F A276592(n)/a(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
%F A276592(n)/a(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - _Seiichi Manyama_, Sep 03 2018
%e From _Seiichi Manyama_, Sep 03 2018: (Start)
%e n | Pi^(2*n) | a(n)/A276592(n)
%e --+---------------+------------------------------------
%e 1 | 9.8... | 8
%e 2 | 97.4... | 96
%e 3 | 961.3... | 960
%e 4 | 9488.5... | 161280/17 = 9487.0...
%e 5 | 93648.0... | 2903040/31 = 93646.4...
%e 6 | 924269.1... | 638668800/691 = 924267.4...
%e 7 | 9122171.1... | 49816166400/5461 = 9122169.2... (End)
%p seq(denom(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
%t a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* _Steven Foster Clark_, Mar 10 2023 *)
%t a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* _Steven Foster Clark_, Mar 10 2023 *)
%t a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s),{s,1-2 n}]] (* _Steven Foster Clark_, Mar 11 2023 *)
%Y Cf. A002432, A046988, A276592, A276594, A276595.
%K nonn,frac
%O 1,1
%A _Martin Renner_, Sep 07 2016