OFFSET
1,2
COMMENTS
LINKS
FORMULA
G.f.: Sum_{k>=1} k^2*x^k^2/(1 - x^k^2) * Product_{k>=1} 1/(1 - x^k^2).
G.f.: x*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k^2).
a(n) = n * A001156(n).
a(n) = n * Sum_{k=1..n} A243148(n,k). - Alois P. Heinz, Sep 19 2018
EXAMPLE
a(8) = 24 because we have [4, 4], [4, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1] and 3*8 = 24.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], (s->
`if`(s>n, 0, (p->p+[0, p[1]*s])(b(n-s, i))))(i^2)+b(n, i-1))
end:
a:= n-> b(n, isqrt(n))[2]:
seq(a(n), n=1..70); # Alois P. Heinz, Sep 19 2018
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Sum[k^2 x^k^2/(1 - x^k^2), {k, 1, nmax}] Product[1/(1 - x^k^2), {k, 1, nmax}], {x, 0, nmax}], x]]
nmax = 60; Rest[CoefficientList[Series[x D[Product[1/(1 - x^k^2), {k, 1, nmax}], x], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 10 2017
STATUS
approved