login
A190668
a(n) = Product_{k>=1} floor(n^(1/k)).
2
1, 2, 3, 8, 10, 12, 14, 32, 54, 60, 66, 72, 78, 84, 90, 256, 272, 288, 304, 320, 336, 352, 368, 384, 500, 520, 810, 840, 870, 900, 930, 1920, 1980, 2040, 2100, 2592, 2664, 2736, 2808, 2880, 2952, 3024, 3096, 3168, 3240, 3312, 3384, 3456, 4116, 4200, 4284, 4368, 4452, 4536, 4620, 4704, 4788, 4872, 4956, 5040, 5124, 5208, 5292, 16384, 16640, 16896, 17152, 17408, 17664, 17920, 18176, 18432, 18688, 18944, 19200, 19456, 19712, 19968, 20224, 20480
OFFSET
1,2
COMMENTS
Although written as an infinite product, all but finitely many terms in the product are 1.
FORMULA
a(n) < n^log(n) for n > 4.
EXAMPLE
a(8) = 8 * floor(sqrt(8)) * floor(8^(1/3)) * 1 * ... = 8 * 2 * 2 * 1 * ... = 32.
PROG
(PARI) a(n)=prod(k=1, floor(log(n+1/2)/log(2)), floor(sqrtn(n+1/2, k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved