login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276103
Lexicographically first sequence of distinct positive integers where all the digits "1" are separated by one digit.
1
1, 2, 10, 12, 13, 14, 15, 16, 17, 18, 19, 101, 3, 121, 4, 131, 5, 141, 6, 151, 7, 161, 8, 171, 9, 181, 21, 31, 41, 51, 61, 71, 81, 91, 210, 191, 212, 1010, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1210, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1310, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319
OFFSET
1,2
COMMENTS
The sequence is started with a(1) = 1 and always extended with the smallest integer not yet used that does not lead to a contradiction.
This is a permutation of all positive integers having every other digit equal to 1, and all other digits different from 1. Here "every other" means either all odd or all even positions, reading either from the left or from the right, Equivalently, a permutation of all numbers that do not have two (or more) consecutive digits equal to 1, or different from 1. None of {11, 110 - 119, 211, 311, ..., 1011, 1100 - 1199, 1211, 1311, ...} nor {20, 22 - 30, 32 - 40, ..., 92 - 100, 102 - 120, ...} will ever appear. - M. F. Hasler, Oct 22 2021
EXAMPLE
To match the infinite digit-pattern 1.1.1.1.1.1.1.1.1.1.(etc.) one must use the integer 10 after the second term (which is 2), then use the integer 12 (as 11 is forbidden: no integer with consecutive 1's is allowed), etc.
PROG
(PARI) is_A276103(n, t=n%10==1)=!while(n\=10, t==(t=n%10==1)&&return) \\ M. F. Hasler, Oct 22 2021
(PARI) A276103_upto(n, a=0, N=[0, 0])={vector(n, i, N[i=2^(a%10==1)]=a=if( a>2, n=10^bittest( logint( a=N[i], 10)+i, 0); my(d); until( d < 9, a += n*if( 9 > d = a\n % 10, 1 + !d, a > 99*n, n *= 100; -9, a=if( i>1, 2080, 10^4)*n\99; break)); a, a<2, i, 10))} \\ M. F. Hasler, Oct 31 2021
(Python)
from itertools import product
def eo1(): # generates +ive terms with every other digit 1 and not-1 or v.v.
yield from range(1, 10)
digits = 2
while True:
for not1s in product("023456789", repeat=digits//2):
yield(int("1" + "1".join(not1s) + "1"*(digits%2)))
for first in "23456789":
for not1s in product("023456789", repeat=(digits-1)//2):
yield(int("1".join((first, )+not1s) + "1"*(digits%2==0)))
digits += 1
def aupton(terms):
alst, aset, astr = [1], {1}, "1"
kgen = {True: eo1(), False: eo1()}
for n in range(2, terms+1):
mustbegin1 = (astr[-1] != "1")
k = next(kgen[mustbegin1]); sk = str(k)
while k in aset or ((sk[0] == "1") != mustbegin1):
k = next(kgen[mustbegin1]); sk = str(k)
alst.append(k); aset.add(k); astr += sk
return alst
print(aupton(64)) # Michael S. Branicky, Oct 31 2021
CROSSREFS
Sequence in context: A258081 A300907 A327793 * A101222 A349831 A079252
KEYWORD
nonn,base
AUTHOR
Eric Angelini, Aug 18 2016
STATUS
approved