login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276005
Numbers with hit-free factorial base representations; positions of zeros in A276004 & A276007.
8
0, 1, 2, 4, 5, 6, 7, 12, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 48, 49, 54, 55, 60, 66, 67, 72, 74, 76, 78, 84, 86, 88, 90, 92, 94, 96, 97, 98, 100, 101, 102, 103, 108, 110, 112, 114, 115, 116, 118, 119, 120, 121, 122, 124, 125, 126, 127, 132, 134, 136, 138, 139, 140, 142, 143, 240, 241, 242, 244, 245, 264, 265, 266, 268, 269, 288, 289, 312, 314, 316
OFFSET
0,3
COMMENTS
We say there is a "hit" in factorial base representation (A007623) of n when there is any such pair of nonzero digits d_i and d_j in positions i > j so that (i - d_i) = j. Here the rightmost (least significant digit) occurs at position 1. This sequence gives all "hit-free" numbers, meaning that for every nonzero digit d_i (in position i) in their factorial base representation the digit at the position (i - d_i) is 0.
Also numbers n for which A060502(n) = A060128(n), in other words, the numbers n for which the number of slopes in their factorial base representation (A007623) is equal to the number of non-singleton cycles of the permutation listed as n-th permutation in the list A060117 (or A060118).
This can be viewed as a factorial base analog of base-2 related A003714.
FORMULA
Other identities. For all n >= 1:
a(A000110(n)) = n! = A000142(n). [To be proved.]
EXAMPLE
n=14 (factorial base "210") is included because 2 occurs in position 3 and 1 occurs in position 2, thus as (3-2) = 1 <> 2, 2 does not "hit" digit 1.
n=15 ("211") is NOT included because 2 occurring in position 3 hits the rightmost 1 in position 1 (as 3-2 = 1), and moreover, also the middle 1 hits the rightmost 1 as 2-1 = 1.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A276005 (ZERO-POS 0 0 A276004))
CROSSREFS
Complement: A276006.
Cf. A060112 (a subsequence).
Intersection with A275804 gives A261220.
Cf. also A003714, A060117 and A060118.
Sequence in context: A300861 A039057 A317185 * A092058 A134532 A282278
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 17 2016
STATUS
approved