login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275777 Primes p such that there are exactly p solutions to y^2 + x*y + y == x^3 + x^2 - 10*x - 10 (mod p). 0
7, 23, 31, 79, 167, 431, 479, 983, 1303, 1607, 1871, 2351, 4799, 6263, 6271, 9551, 10103, 10111, 11471, 11519, 12503, 12647, 12959, 14087, 17231, 17623, 21599, 23039, 25391, 25919, 25951, 28879, 29927, 33599, 35543, 43711, 48479, 48647, 49871, 56671, 57119, 62743, 71551, 71999, 79151, 81551, 82567, 91703, 96079, 97919 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes p = prime(n) for which A275742(n) = p.

Primes p for which A030184(p) == 0 (mod p).

Primes prime(A275745(n)) for which A275745(n) = 0.

LINKS

Table of n, a(n) for n=1..50.

PROG

(PARI)

{ N = 10^5 + 2;

default(seriesprecision, N);

V = Vec( eta(q) * eta(q^3) * eta(q^5) * eta(q^15) );

forprime(p=2, N, if( V[p]%p == 0, print1(p, ", ") ) );

} \\ Joerg Arndt, Sep 11 2016

(PARI) \\ Much slower than the above, but maybe useful for isolated values

is(n)=if(!isprime(n), return(0)); my(s, t, y='y); for(x=1, n, s+=#polrootsmod(y^2+x*y+y-x^3-x^2+10*x+10, n); if(s>n, return(0))); s==n \\ Charles R Greathouse IV, Sep 12 2016

CROSSREFS

Cf. A030184, A275742, A275745.

Sequence in context: A141175 A295196 A287309 * A329931 A157811 A341284

Adjacent sequences:  A275774 A275775 A275776 * A275778 A275779 A275780

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Sep 10 2016

EXTENSIONS

More terms from Joerg Arndt, Sep 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 02:20 EDT 2021. Contains 343636 sequences. (Running on oeis4.)