The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275777 Primes p such that there are exactly p solutions to y^2 + x*y + y == x^3 + x^2 - 10*x - 10 (mod p). 0
 7, 23, 31, 79, 167, 431, 479, 983, 1303, 1607, 1871, 2351, 4799, 6263, 6271, 9551, 10103, 10111, 11471, 11519, 12503, 12647, 12959, 14087, 17231, 17623, 21599, 23039, 25391, 25919, 25951, 28879, 29927, 33599, 35543, 43711, 48479, 48647, 49871, 56671, 57119, 62743, 71551, 71999, 79151, 81551, 82567, 91703, 96079, 97919 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p = prime(n) for which A275742(n) = p. Primes p for which A030184(p) == 0 (mod p). Primes prime(A275745(n)) for which A275745(n) = 0. LINKS Table of n, a(n) for n=1..50. PROG (PARI) { N = 10^5 + 2; default(seriesprecision, N); V = Vec( eta(q) * eta(q^3) * eta(q^5) * eta(q^15) ); forprime(p=2, N, if( V[p]%p == 0, print1(p, ", ") ) ); } \\ Joerg Arndt, Sep 11 2016 (PARI) \\ Much slower than the above, but maybe useful for isolated values is(n)=if(!isprime(n), return(0)); my(s, t, y='y); for(x=1, n, s+=#polrootsmod(y^2+x*y+y-x^3-x^2+10*x+10, n); if(s>n, return(0))); s==n \\ Charles R Greathouse IV, Sep 12 2016 CROSSREFS Cf. A030184, A275742, A275745. Sequence in context: A141175 A295196 A287309 * A329931 A157811 A341284 Adjacent sequences: A275774 A275775 A275776 * A275778 A275779 A275780 KEYWORD nonn AUTHOR Seiichi Manyama, Sep 10 2016 EXTENSIONS More terms from Joerg Arndt, Sep 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 09:23 EDT 2024. Contains 372786 sequences. (Running on oeis4.)