OFFSET
1,2
COMMENTS
a(n) is of the form Fibonacci(k) + 1. Is this sequence finite?
There are probably no more terms. If a(9) exists, it is greater than 10^200. - Charles R Greathouse IV, Aug 08 2016
EXAMPLE
35 is in the sequence because A038548(35) = 2 => two decompositions of 35 = 1*35 = 5*7 => 35-1 = 34 and 7-2 = 5 are Fibonacci numbers.
MATHEMATICA
Do[ds=Divisors[n]; If[EvenQ[Length[ds]], ok=True; k=1; While[k<=Length[ds]/2&&(ok=IntegerQ[Sqrt[5*(ds[[k]]-ds[[-k]])^2+4]]||IntegerQ[Sqrt[5*(ds[[k]]-ds[[-k]])^2-4]]), k++]; If[ok, Print[n]]], {n, 2, 10^7}]
PROG
(PARI) isFibonacci(n)=my(k=n^2); k+=((k+1)<<2); issquare(k)||(n>0&&issquare(k-8))
is(n)=fordiv(n, d, if(!isFibonacci(abs(n/d-d)), return(0))); 1 \\ Charles R Greathouse IV, Aug 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 08 2016
EXTENSIONS
a(1) inserted by Charles R Greathouse IV, Aug 08 2016
STATUS
approved